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Abstract. We start with a Galilei-invariant symplectic model of two charged parti-
cles with spin and magnetic moment in interaction, which could serve as a model
for the (classical) hydrogen atom. To this model we apply two different versions of
geometric quantization and we obtain a hamiltonian operator which is (apart from
some numerical constants) the well-known hamiltonian for the hydrogen atom,
including spin-orbit coupling (fine-structure) and spin-spin interaction ( hyperfine-
-structure).

§1. THE CLASSICAL HYDROGEN ATOM

Let us recall that the movements of a classical (i.e. non-relativistic and not
quantized) particle with spin under the influence of an exterior electromagnetic
field are curves in the evolution space E = IR7 x §2, curves who are the charac-
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teristics of a presymplectic 2-form o (of rank 8) given by:
. 1 . s
o= (mdy,—eE dr) A(dr/ —v/dey+ — ee,, Bidr/ Ndrk
7 ) ijk

1 o .
- —se ' du/Adu* + d(uB u’ dr)
2 ] J

with (r, v, ) € R, ue S2C R? (Ju|=1).

The quantities m, e, s and u are constants which are interpreted as the mass,
the electric charge, the spin and the magnetic moment associated to the spin
vector of this particle. The electromagnetic field (E, B) is supposed to depend
only on the space-time variables (r, ¢). The condition do = 0 leads us in particular
to the homogeneous Maxwell equations, who guarantee the existence of the
electromagnetic potentials (A, V) such that B=rot A and E= —grad V — atA.

1 .
With these definitions and the observation that 7 €kl u’ du* A du' = sin 0 d 9
A dy = surface (S2), the presymplectic form o can be written as:

o6=d{(mv—eA)-dr—Hdt}—s - surf

1
where H = —2—m‘|v||2+eV—uB-u.

The equations of motion of this system are given by the characteristic foliation
of g,1i.e. by ker (0):

Sr=v &t
mbév=[e(E+vxB)+pugrad (B-u)]b¢
séu=puxBst.

If we suppose that the electromagnetic field is created by a second particle of
the same kind, then one derives finally (see [So2]) the following model: two
particles in interaction with masses my, charges €, Spins s, and associated magnetic
moments 4, (where k=1, 2) can be described by an evolution space £, which
is an open set in IR1> x $2 x §2, and a presymplectic 2-form o:

0 =dw —s, - surf, —s, - surf,
with
(1.1 w=mv -dr + [0¥x C(r; —1)] - dr

+m,y, - dr, + [u# x C(r,—r)] - dr,— Hd¢?
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1 1
H= Py my v |+ Py my | Vo2 + ey e, Vi — 1) +uypyuy - Cryp— 1)) - wy

where we have introduced the following useful abbreviations:
uf=Nu + N, N =kpe, N =kpe, k= ¢!
(1.2) V(g)=|q| !, C(q)=—grad V(®)=q-|q|’
C@=1-|q[*—3q-q"|q| "
One easily verifies that o is invariant under the action of the Galilei group:
, >Ar +br+c
v,>Av, +b
u, > Ay
t>t+71
A€S03), b,ceR’® 71€R

hence the general theorem on barycentric decomposition can be applied (see
{So1]), which results in the following obvious change of coordinates:

R=(mr + m2r2)/M

V= (mv, + m2v2)/M

r=r, —r,

V=V, -V,
M=m +m, m=m1m2/M.

In these coordinates the 1-form w (1.1) takes the form:

(1.3) w=MV-dR —H dt) + (mv-dr + [u* x C(r)] - dr — H,d?)
H, 1M 2
M
1
(1.4) H= ; m||v||2 +e e, V() +ppp,u, - C'(r) ",

This model was proposed by Souriau to describe the hydrogen atom in terms
which are purely classical. If we forget the movement of the barycentre (which
is rectilinear with constant velocity), we obtain a reduced evolution space
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E = R3\ {0} x R*x R x §2x S? containing the point (r, v, ?, u,. u,) with pre-
symplectic 2-form g, :

(1.5 g = dwr -8 surf1 -8, surf2
(1.6) w,=[mv+u¥xC@)] dr—H dr.

This system has SO(3) x IR as a dynamical group and the associated momentum-
-mapping ([Sol]) gives us 4 conserved (Noether) quantities: the energy H_ and

the total angular momentum L, ot

1.7 L =rx[mv+u¥x C()] +s,u, +5,u,

T, tot

Since we will be interested only in the reduced model, in the sequel we will
drop the subscript r, so from now on we work with an evolution space
ECR'x §2x 82 together with a presymplectic 2-form o defined by (1.5).
The formulas (1.6) and (1.7) strongly suggest the introduction of the coordinates
p = mv + u¥ x C(r) instead of v and indeed the gives:

o=dpAdr—s, - surf, —s, - surf, —dH A d¢

L,=rxp+su+s,u,
(1.8)
H=|p|*/2m + e e, V(1) —u® - (C(r) x p)/m

+upyu - C'(0) - uy + | u¥ x C(n) |?/2m.

In o one should recognise the canonical part dp A dr, in L one recognises the
usual angular momentum plus the two internal angular momenta usually called
spin, and finally H should be compared to usual hamiltonian-operator of the
hydrogen atom: kinetic energy, Coulomb potential, spin-orbit coupling, spin-
-interaction and the diamagnetic term.

The equations of motion are again given by ker (o), i.e.:

81/t =v=(p—u*x C(r))/m

5,0u,/8¢ = [A;vx C(r) + uIMZC'(r) “u,] xuy
(1.9)
$,8u,/8t = [A,vx C(r) + pluzc'(r) ‘] xu,
8p/8t = C'(1) - [vx u*] + e, €,C(r) — p p,u, - C"(1) - u,

where a-C"(r)-b=-3|r| 3{(r-a)b+(r-b)a+(a-b)r]+15|r| "(r-a)xr-b)r.

Associated to this evolution space E is a phase space M, which is a leaf ¢ =
constant of E. The pull-back of ¢ to M is a symplectic form, which we will
denote also by o, and the equations of motion are given by the flow of the hamil-
tonian vectorfield X, associated to the hamiltonian H (which is defined on M
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since H does not depend on ¢) by 0(X,, . ) + dH = 0.

§2. PREQUANTIZATION

Prequantization is the intermediate step between a classical description of a
system (by a symplectic manifold and a hamiltonian) and the corresponding
quantum mechanical description derived by means of geometric quantization.
It should be noted at this point that there exist two (nearly) equivalent view-
points of geometric quantization: one by Souriau and one by Kostant (e.a.).
In this and subsequent sections we will describe briefly the necessary ingredients
of these two viewpoints, specialising to the model we want to study, i.e. the
reduced hydrogen atom as described in §1. For a more detailed account of these
two quantization procedures the reader is referred to {So1] and [Du] for Souriau’s
approach, and to [Bl], [Kol] and [Ko2], or to [S&W], [Sn], [Wo], [Tul], [Tu2]
for the approach by Kostant and others.

§2a. PREQUANTIZATION ACCORDING TO SOURIAU

A prequantization of a symplectic manifold (M, o) is a pair (Y, «) in which
m:Y~>M is a principal U(1) =S!C € bundle over M and «/h a connection-
-form on Y with associated curvature form curv (a/h) = (n*0)/h.

1
IfM=25%0=—s-surf (S2) then M admits a prequantization only ifs = -2— nh,

ne Z\{0}. To describe such a prequantization we recall the Hopf fibration
7 :§3 - S2which can be defined as follows:

Zl
ZeS’cCeZ= (ZZ)’ Zt=(z'1,z*M, 2" 2=1 ( T denotes
complex-conjugation
and transposition)

=2Z -2 —1& GL(2, C) is a hermitian involution with zero trace

=>3JlueS?cR?*:2Z - Z'—1=u-0

01 —i
with ¢ = Pauli-matrices = (01,02,03) =( ( , (O l), (1 0 .
10 i 0 0 —1

Now 7(Z) = u is a well defined projection which tums S3 into a U(1) bundle
over 52, because 7 is invariant under the action of U(1) on S3 defined by scalar
times vector:
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feu(hcg, =1
= 22-Z'—1=2Z% (ZO)T—1 = 71(Z) = n(ZY)
ZeCl 72t 2=1

and because this is the only freedom in Z when 7 (Z) is given.
The group Z/nZ can be considered as a subgroup of U(1) and U(l)
mod (Z/nZ) = U(1), so we can construct U(1) bundles ); over §? by

Y, =S¥zZ/nz).
The 1-form @, on S3 defined by o, = inhZ?t - dZ descends to )’;1 and (Yn, O‘n)
i
defines a prequantization of (2, — 7 nh - surf).

The case in which we are interested is the symplectic manifold M = T*(Q x
S2x 8§52 with configuration space Q = R3\{0} and the symplectic form g given
by (1.5) or (1.8) (at ¢ = constant). One can verify (see [Sol]: quantization by
fusion) that a prequantization (Y, «) of this system is given by:

Y=T*Qx8*x83 ~
where

(r,v,Z,Z)~(r,v,Z;{ exp (21rik1/n1), Z, ¢ lexp (2mik,/n,)
for

1

§el(l), kez, s = -;nih,- i=1,2)
and a 1-form o on Y which is the direct image of the 1-form § on T%Q x S x §3:

B=I[mv+u*xC()) dr+in hZ]-dZ +in,hZ]-dZ,.

It should be noted that any other prequantization (Y ', «') of this system is
equivalent to the given one since M is simply connected (which implies that
HYM, )= 0 and this cohomology space indexes all inequivalent prequanti-
zations).

The hamiltonian vectorfield X, of H (see (1.4) or (1.8)) on M can be lifted
to a vectorfield X on Y in a unique way such that

a(Xg)=n*H and m X, =X
When we restrict ourselves to the case which is particularly interesting: s, =

N

1
,= 5 h one finds for X]‘,:
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Sr=v
5v = m~HC(r) x su* —u*x [C'(r) - v] — C'(r) - [u¥ x v]
+e,e,C(r) —ppyu, - C'(r) - uy}
.1 8Z, = ifhly, Z, + (I\,C(X) x v — 1, C' (D0, - 0)Z,}

8Z,=i/h{v,Z, + ((\,C(r) x v — p, C'(0u ] - 0)Z,}

vEv, +v,=1/2m| v|2—e e, V(0) + up,u,C'(D0,

= H—261€2V(r) (cf.(1.4))

where §u¥is given by (1.2) and (1.9) with 8¢ = 1.
In this formula v; and v, are two real Lagrange multipliers; their remaining
arbitrariness (v, — v,) disappears when passing to the quotient Y.

§2b. PREQUANTIZATION ACCORDING TO KOSTANT

In this formalism a prequantization of a symplectic manifold (M, o) is a com-
plex line-bundle L over M with connection V and compatible fibre-inner product
such that curvature (V) = o/h. The connection between this formalism and Sou-
riau’s is that # : L - M is the vector bundle associated to the principal U(1)
bundle Y by means of the standard action of U(l) on C; the connection V on
L is then derived from the connection form a/hon Y.

If M=S2 o=—s- surf the bundle L is trivialised by means of two local
charts U, = IR?=C on M with transition function z_= 1/z+ (i.e. U, are the
two natural charts on S2= PP}(C), where z ,+ is the projection from the north
pole of S? and z_ the projection from the south pole followed by an inversion;
the local coordinate z_ is related to the coordinates (Z1, Z?) defined in the
beginning of §2a by z+T =ZYZ?%. Local charts of L are now given by U,xC
with transition function:

U xCa(m,w) > (mg_ (mw)eU_ xC,
g (my=(z, |z, )" = (/|2 |)*/" = exp (— 2isp, /) = exp (2isy_/h).

From this formula one can see the origin of the quantization condition 2s/h € Z:
this is a necessary condition to guarantee that this transition function is well
defined on S2. ,

A section X\ of L is represented by two complex functions A, on U, and the
connection V acting on X is defined by means of local symplectic potentials
9, (i.e. d¥, = 0 = —s - surf): for a (local) vectorfied £ on M:
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(V,N), = €N, —i/h 8, ()X,
O, =is(z,z, + 1)1z, dz,t —2,7dz) o=2is(z,z,"+ 1) 2dz, Adz 1

In our case M = T*Q x S?x S2, Q = IR3\ {0}, and o given by (1.5) or (1.8) (at
t = const), and a trivialisation of L is given over four charts U,, = T*Q x U, x U,
with transition functions 8(s4)(e1) given by e.g.:

By py(m) = exp (= 2isyp, [N), g\, (m)=exp (2i(s;p), + 5,9, D).
The connection Vis given on local sections A, , by the formula:

(VE)\)tt = E)\-ﬂ; —i/h 0tt(E))\tt

9, =p-dr+ isl(zlizlj+1)‘1(zlidzli*—zlj dz,,)

t+
+isyz,,2, Y+ 1) Nz,, dz,,T—2,,dz, ).

Other choices of local symplectic potentials & correspond to different trivialisa-
tions of the same bundle L (since there is only one such bundle up to equiva-
lence).

§3. POLARIZATIONS

On can associate in a canonical way a Hilbert-space H, to a prequantization
(in the formalism of either Souriau or Kostant) with the nice property that to
each observable f, f: M — R, corresponds an operator Qf on Hc satisfying the
commutation relation

Q151 = /MIC O

(with on the left-hand side the Poisson-bracket of fand g and on the right-hand
side the commutator of operators), together with Q1 = 1. However H_ cannot
serve as the Hilbert-space representing the quantummechanical description of
the system since it consists essentially of functions on M and not of functions
of the position coordinates only (or the momentum coordinates only).

The key-idea is to replace H, by a Hilbert-space H consisting of (roughly
speaking) functions which depend on only half the number of coordinates on
M.Therefore one introduces a polarization I which is a complex distribution

1
on TM of dimension n = B dim M satisfying the following conditions:
G £, C(T, me, dimg F =n « Fis lagrangian
(it) Fisisotropic
(iii) Fis involutive
(iv) dimg FT N F = kis constant on M
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(v) FT 4+ Fisinvolutive.

Conditions (i) to (iii) say essentially that a function which is constant on the
leaves of F depends only on the first #n coordinates of a canonical coordinate
system; conditions (iv) and (v) are technical conditions.

The polarisation F wé will use when quantizing the (reduced) hydrogen atom,
is spanned by either of the following three sets of five (local) vectorfieds:

3.1 {3/av, 3/dz,1, 8/3z,T), {8/ap. 8/3z,", 8/3z,'}
(3.2) or {X,X,.X,
1 2

where z, (i =1, 2 indicating the first and second particle) is a (local) complex-
-holomorphic coordinate on S2? = IP}(C) with respect to the complex structure
introduced in §2b. Roughly speaking H, will be replaced by a Hilbert-space H
consisting of «functions» which are constant along the polarization F, which
means in this case of functions of r and 2z, which are holomorphic in z;.

It is from this point on that the quantization formalism of Souriau diverges
from the formalism of Kostant, so the (results of the) different quantization
procedures will be discussed in the next section.

§4. QUANTIZATION

The basic idea in both quantization formalisms is to compute the flow a,
associated to the hamiltonian vectorfield XH (1.9), lift this flow to a flow 5,
on the Hilbert-space H, and finally compute 51 (¥) up to first orderin ¢:

a,(¥) =¥ +ihHY:+0()

where the coefficient in f is interpreted as the result of the hamiltonian-operator
acting on W : the generator of time evolution.

The main computational ingredient to compute this first order term is the
method of stationary phase (see [H6], lemma 7.7.3): for fz # 0:

f e3im s B4 1/8y 2 exp (— i | x | /1) f(x) dx, dx, dx,

= £(0) — it/4B [A £1(0) + O(z?).

Remark. In the sequel of this section we will often say that the Hilbert-space
H is given by a certain vector space with an inner-product. In reality this space
will only be a pre-Hilbert-space but we have adopted this language for the sake
brevity. The reader is asked to interpret these statements as «H is the completion
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of the inner-product space», e.g.:

L*(R) = {C" functions on R}.

§4a. QUANTIZATION WITH POLARIZERS

In the quantization scheme of Souriau [Sol], given a polarization F of (M, o)
and a prequantization (Y, ), one deals with the complex distribution F~ of
TY defined by:

(4.2) a(F)=0, F=mF"

which is called a Planck-polarization (the horizontal lift of F). Then the Hilbert-
-space H of wave functions is the space of C™ functions f:Y — € satisfying:

F f=0
vie U(l) :§*f=¢-f

where on the left-hand side { denotes the action of U(1) on the principal bundle
Y and on the right-hand side ¢ denotes multiplication by the complex number §.

In our case Y is a quotient from T*Q x S$3 x §3 which is in turn embedded in
T*Q x C2x C2. Now we will always use the coordinates (r, v, Z,,Z,) on T*Q x
€2 x €2, but it goes without saying that the expressions given will descend to Y.
So the Planck-polarization F ~ (which is 5 dimensional) associated to the polari-
zation (3.1) is given by the trace on Y of the mixed real/complex distribution on
T*Q x €% x €2 spanned by the 7 vectorfields:

d/av, 8/dZ,, [dZ,

(N.B. beware of the relatio\n between (ZY, Z%) (as defined in §2a) and z (as
defined in 8§2b): zT= Z1/Z2 which holds for both particles). The associated
Hilbert-space is given bly:

(43) H= {1092, 2) = Zyy_, V0,20 25, | <o)
or equivalently by:
(4.4) H={¥(@,]ap=12and |¥|><e}
where the norm | | is derived from the hermitian scalar product (, ) defined by
(f,g)=(21r')_2f f-g¥drdu, du,
0 %82 x§?

or
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(W, @)y=2_ ,_ I,ZI \Il(r)quJ(r)wTdr.
R3

It is worth noticing that the Planck polarization /'~ (4.2) can be viewed as
the kernel of the derivative d¢ of the complex 5-form ¢ on Y:

¢ =vol (Z,, dZ)T Avol(Z,. dZ)* Adr! Adr? A dr’
where vol (Z,dZ) = Z'dZ2—Z?dZ".
It can be shown that this 5-form satisfies the conditions:
() de¢=ik/haA¢
(4.5)
(ii) rank(¢)=n

1
where k€ Z\{0}(here k = 2) and n = 7 dim (M) (= 5). Any complex n-form

satisfying these conditions is called a k-polarizer and the (complex) distribution
F " defined by:

F~ =ker(d¢)

is a Planck polarization. For an introductory account, see {Du] and {Ra]. One
of the subtleties with polarizers is the rising of certain global existence conditions,
which leads to strong selection rules on the (prequantizable) symplectic manifolds

1
(e.g. only spins 5 and 1 can be «polarized» in a SU(2)-invariant way; fortunately

enough this is the case of our model).
Using the polarizer ¢ we can describe the Hilbert-space H (4.3) as the set of
those C” functions f : Y = C satisfying:

(4.6) df—ihfoyA¢ =0.

Let a, denote the flow of the Hamiltonian vectorfield XH on (M, o) (see (1.9))
and 5t the flow of XI; on (Y, o) (see (2.1)). The flow &t is a local 1-parameter
group of diffeomorphisms of (Y, &) which leaves « invariant and commutes with
the action of U(1). Trivially, ¢, = &t*qb is again a polarizer (i.e. satisfying condi-
tions (4.5)) with associated Hilbert space Ht as defined by (4.6). Sinceft =fo 5,
is in H: if fis in H, it is possible to define a pairing between H: and H by:

4.7 <f,,g>:xff,-g*-\/|¢,/\¢*/x1-x
M
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where X is the Liouville volume of (M, 6); since o, A ¢1is a volume from on M it
is proportional to A with proportionality function ¢, A ptN If ¢, A ¢' is now-
here zero (i.e. the polarization F' transverse to the polarization at*F) then (4.7)
defines a linear map from H: to H and hence an evolution operator (also called
a,) on H by:

4.8) @,(f), 8 = (£, .

If the constant « in (4.7) can be chosen such that the expansion (4.1) holds
(and in our case we can) then the flow a, (4.8) on H defines a Hamiltonian
operator H.

In the case of the hydrogen atom the pairing (4.7) of polarizers reads:

(.8 = (2m) 22mmh)~ Y2 e3imsin®/4

t
. f exp (— i/hf (woa)(r,v,Z,,Z)ds) -
T*Q xS2x§? 0

IR UM ACR DL

4.9) . (27,5 - 1,2<I>(r)75Y1” )/28T)T ‘K, - drd(mv)duldu2
where |
[, v,Z,2,)= \P(r)aBZI“*ZZ"T, g, v,2,,2) = (b(r)aﬁZl"‘*Zzﬁ‘T,
t
Y.(1) = Z;(1) - exp (— i/hf (v]. oa)(r,v,Z;,Z))ds) (7=1,2)(cf. (2.1)),
0

(D), v(t), Z,(1), Z,() =a,(r,v,Z,Z,) and K, =V|¢ A¢'/A|.

The expression given for the constant x contains the standard normalization
coefficients together with a phase factor corresponding to the Maslov index.
One can show that:

K, =1 +ar> + bp/t? + 0(%)

and
t
exp (— i/hj (woa)(r,v,Z,,Z,)ds)
0

= exp (— itm || v|¥20)[1 + it/h(e e, V(r) —p pyu, - C'(1) - u,) + y1? + 0(13)]
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where a, b]. (j=1,2,3) and vy are independent of v. In view of this last expression
we want to apply the method of stationary phase to the integration over v. Since
the vectorfield XH is linear in the velocity v, the flows a, and 5t are analytic in
v and hence we can apply the method of stationary phase to each term separately
in the expansion of the integrand of (4.9) with respect to v. It follows (because
we also have analyticity in f) that only the coefficients of ||v||°t and | v|]2t2 will
contribute nontrivially to the 1rst order in ¢ (the Hamiltonian). Integration on
spheres is achieved by using some classical formulas on the integral over S2 of
the trace of polynomials of IR? and we finally get the result:

(HY) ;= —022m A Y, +e e, VDY,
—N/me Y- (CO)x1/iVV¥ )—X\/me, (Cr) xh/iV ¥ )
+5/9 01 Z, 0, C' @ - (M),
+ 2 AR C@ [P X, + X A\fm T, (6D) - D@* - (ah) P,

with D * =8| r|~4 —r/ r¥| 1| ¢

If we omit the wave functions, denote by o; the Pauli-matrices acting on the
j-th index of the wave function (j =1, 2) and introduce o%= )\1 o, + )\2 g,
(cf. (1.2)) then we obtain the Hamiltonian operator IH as expressed with respect
to the representation (4.4) of the Hilbert-space H:

(4.10) H=—hY2mA +e e,V
—a* (C(r) x /i V)/m+5/9uu, 0 -C(r)-o,

+ A2+ A D/m | CO) |2+ A\ N\ /m (6, x C(1)) - (0, x C(r)).

{1
§4b. QUANTIZATION WITH (— £) ) F - FORMS

Since it is outside the scope of this paper to give a complete description of
this quantization method, we only give the necessary intermediate results together
with some remarks for those readers who know about this method.

Using the polarization defined by either (3.1) or (3.2) we obtain a Hilbert-
-space H which can be represented by functions of r, z,and z, (re IR3, 2,€Q)
which are polynomials of degree (2sl./h— 1) in z;. If we specialise to the case
s;=s,="h we obtain spin-spaces of dimension 2 for each spin, corresponding

. ) .1 1
to particles with spin 3 It should be noted that the use of (— —2—)-F-forms

gives us a spin-shift of one half with respect to the previous method (which is
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1\
equivalent to using (— 3)-F-densities; see §4c) (see also [Wo], §6.3.6 and

[Tu2]); the reader is referred to the discussion in §5 for more comments on
this difference. In our case the Hilbert-space can now be given as:

(4.11) H={Y(r,z,z)=2_ ,_ ,¥(0),,2°2,%22,T+ D Uz,2,T+ )7
W¥ is «square integrabley}

with inner-product

(4.12) (b, 0)= 161‘12[ drdx, dy,dx,dp,(z,2," + 1) 2(z 2,7+ 1)~ 2-
R3x¢?
Vdet 4 ¥ (r, z,2,) (r, 2), 2,)
with Vdet A = (2hh) 1 (z,z," + I)(z,2,' + 1)
or equivalently by
(4.13) H= {‘Il(r)w8 square-integrable, o, § = 0, 1}

with inner-product

W, D=7, f V(r),, B (), dr.

R3
Remarks.

1) In the cases Z,.‘", r¥ and o* the superscripts @ and & denote the a-th and
k-th component of the vectors ZJ., r and o; however the superscript « in z]f’
denotes an exponent.

2) ¥ and ¢ can be seen as the local (i.e. on the chart U++) expressions of
sections of the prequantum bundle L, sections which are covariant constant
along the polarisation F.

1
3) The (— E)-F-forms are chosen such that they are identically 1 on the

meta-frame corresponding to the frames of F given in (3.2).

4) The first line in (4.12) is derived from the Liouville measure associated
to the symplectic form o given in (1.8) by substituting the three vectorfields
—ofop= X..On 52 we use the local complex coordinate z = x + iy as defined in
§ 2b, in which the surface is given by

surf. = 4(x2 + y2+ )" 2dy A dx.
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5) v/det A is a correcting factor to insure that the expression is a correct
density on R3x C2.

6) The second, more convenient formulation of H can be computed directly
from the first one by integrating over C2.

If a, is the flow associated to the hamiltonian vectorfield XH (1.9) then the
flow &t on H is defined by the BKS (Blattner-Kostant-Sternberg)-kernel:

(4.14)  (Y,a,(o= 16h2j drdpdx, dy, dx, dyy(z,2,7+ )72 (z,z, T+ 172
REx¢?
Vdet 4,V (r, z,,2) (pea)r,p, 2., 2,) -

t
- exp (ih)~ lj (8 (X —HXa(r,p, 2,,2,)) ds)
0

with 4, a 5 x 5 matrix given by:
n—1 1 SN
_ ((zh) er(r ca,) (ih) 1er(z>\c>at)
¢ NG X, (FPea) GRX, (zy0a))
K K
Remarks

1) Here the first part is the complete Liouville measure.

2) (poa,)-exp(...[...ds) is the local expression of the time-evolution
of the section ¢ of the prequantization line bundle L.

3) Vet A, is again a correcting factor to insure that the integral is a well
defined density on IR® x €2,

4) Since a,F and F T are transversal for small £, no extra terms representing

1
the (— 7 )—forms are involved.

Finally we compute the term linear in ¢ in the integral (4.14), using the flow
(1.9) and the method of stationary phase (4.1). When we evaluate the integrals
over €2, using the second representation of the Hilbert-space, the result is given
by the hamiltonian:

(4.15) H=—h¥2mA +ee, V()
—06*-(C() xh/iV)/2m +2/9 TN c'(r) - g,
+ 2+ ND/MAm | C) |2 + A 2 f4m(e, x C@) - (0, x C(r))

where ¢% = A, 0, + A, 0, (compare with (1.2)) and where the matrices o; act
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upon the j-th index of ‘I,aﬁ’ i.e. 0, act upon index & and o, upon f.

1
§4c. QUANTIZATION WITH (— 7)-F-DENSITIES

1
— 5)—F—forms there is apparently

1
When using (—— 5)—F -densities instead of

no change in the Hilbert-space: it is, apart from an overall factor, given by (4.11)
(or equivalently by (4.13)). The most important difference is that one has to

1
=5, = — h instead of 5,=9,= h to derive this result. This difference can

use S1 2

1
be attributed to the fact that the (—— 5) -F-form which is 1 on the metaframe

1
corresponding to the frame (3.2) is a (—— ?)-F-form which is covariant constant

1
along F, while the (— E—)-F—density which is 1 on the frame (3.2) is not. On the

o=

1 _1 _
other hand the (— 5)-F—density which takes the value (2121T +1) 2@,z + 0D
on the frame (3.2) is a covariant constant (— E)-F- density. Another difference

is that V/det 4 should be replaced by \/{ det A |, but since det A4 is real positive,
this change is not visible.
The difference between forms and densities becomes visible when we calculate

1
(¥, a,(p)) with the BKS-kemel for (— -2—)-F-densities:\/det A, has to be repla-
ced by \/[ det A4, | times a factor of modulus 1: the Maslov index (see also §4a).
1
Moreover the calculations of a, has to be done with §,=8,= B h instead of 8§ =

s,="h. Apart from those changes, the same remarks as for the BKS-kernel with
forms are valid. In this case one obtaines the hamiltonian H:

(4.16) H=—htY2mA, +ee, V(D
— % (C(r) x1/iV )/m +5/9 HiK, 0, C'(r) - o,
+ A2+ 0/ m|C) |2+ N A m(a, x C(D) - (6, x C(r))

which is exactly equal to the result (4.10) obtained by quantization with pola-
rizers.

§5. DISCUSSION

The results of the two quantization methods (which we will call the polarizer



H-ATOM 417

1
method and the 7 -form method) are given in (4.10) and (4.15). The fact that

these two methods give different results (although only in some numerical con-
stants) should not be surprising since they quantize different symplectic mani-
folds (polarizers s, =s,= 13 he (— —;—)—F—forms s, =s,="h). The justification
of these different models is given by the interpretation of the parameter s (or
equivalently by the resulting quantum Hilbert-space); however, the authors
could not decide which procedure is the right one, since both methods do not
really arrive at the correct answer.

Before we discuss the different terms in more detail, we make two global
comments. First we note that we have omitted the origin of IR? from our confi-
guration space because of the singularity at r=0 of the Coulomb potential.
However we have reintroduced the origin in the description of our Hilbert-space,
which consists of four copies of LYR?, Lebesgue). This manipulation is comple-
tely justified by the isomorphism LZ(IR3) —» LZ(IR3\{0}) (given by restriction of
functions) between Hilbert-spaces. The second remark concerns the interpreta-
tion of the model: the reduced model as given in §1 does not describe the motion
of the electron, although it does to a fairly good approximation since the reduced
mass is nearly equal to the electron mass (an «infinitely heavy» proton). Conse-
quently our model incorporates from the beginning the correction that one has
to use the reduced mass instead of the electron mass.

We now consider the different terms in (4.10) and (4.15) separately while
substituting the correct values for the charges, magnetic moments and masses,
interpreting the first particle as the electron and the second particle as the proton;
more precisely:

m,=m, m2=mp m =reduced mass=mlm2/(m1 + m2) ~m,
e, =—e€ e,=e e =elementary (positive) charge
u,=—g,eh/(4mc) K, =g, eh/(4m c)

e 02 2 - 2 2
A =-g,e*h/(4m c?) A= g,e h/(4mpc )
8,= electron g-value =~ 2.0 g,= proton g-value ~ 5.6.

To facilitate the comparison with literature (e.g. {B&S], [Co] or [Ga]) we also
introduce the operators angular momentum L, electron-spin S and proton-spin
I defined as:

L=rxh/iV, S=—heo
2
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With these conventions we obtain the following terms.
1) Kinetic energy and Coulomb potential

h? e2

These terms are well known and need no comment.
2) Electron spin-orbit coupling

1 gze_2 1
(1 ?)' ame? P

Here we note for the first time a difference: the polarizer method obtains a
factor 1, the I— - form method finds a factor % and in literature one finds a
factor 7 with a footnote saying that a heuristic reasoning gives a factor 1 but
due to Thomas precession the correct value should be % . It seems that the
7 -form method obtains the correct factor; on the other hand, the purely

phenemenological constant kX (introduced in (1.2)) was given the value k = ¢~
by Souriau to be compatible with the macroscopic theory of magnetism. Hence

1

1
nothing hinders us to make another choice,e.g. k = 5 ¢~ 1, to obtain the correct
factor in the spin-orbit coupling when using the polarizer method (showing that
1
the correct value obtained by the £l -form method is accidental).

3) Spin-spin interaction

g.8,¢’ S-1 (S -0
(5/9 or2/9) - o 3 +3 R .
Amgm,c Il [l

1
Again different constants: 5/9 by the polarizer method, 2/9 by the 3 -form

method and 1 in literature! Before we discuss the different constants we note
that the operator in square brackets contains a singularity in the origin; in the
usual way (see [Ga] or [B&S]) one deduces that this singularity has the form of
a delta function 6(r). This delta function contribution is sometimes called the
Fermi-contact term and it explains the hyperfine structure of the spectrum
of the hydrogen atom (the 21.4 cm radio wave in astronomy) which is verified
experimentaly to a very high degree of accuracy. It shows that the constants
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1
obtained by both methods are incorrect. Moreover, the > -form method, which

was originally introduced to obtain the correct energy spectrum of the harmonic
oscillator (metaplectic correction), does not in this case correct the spectrum
correctly.

It is our opinion that this is a serious problem which seems to be intimately
related to the use of complex polarizations. One might hope that systematic use
of real polarizations (even if they have singularities, which is unavoidable on $?)
leads to the correct answer. Research is being done in this direction.

4) Proton spin-orbit interaction

1 g e’ 1
(1 or—)- P S
2] ame? ]

This term has the same form as the electron spin-orbit interaction but is
neglegible with respect to it since the ratio mp/mez 2000. Apart from this con-
sideration, the same remarks as given for the electron spin-orbit interaction
apply in this case.

5) Diamagnetic terms

( 1 )D\.2+>\,2 NN,

or — | +
TR

7 -(olxr)~(02xr)}.

These terms are of the order ¢~ 4 (they contain A2) and hence neglegible with
respect to the terms 1), 2) and 3) which are of the order 1 or ¢~2 The origin
of the difference in-constants here is the same as in the second term but appears
here squared because it is quadratic in the parameters A.
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