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Abstract.We start with a Galilei-invariant symplecticmodelof two chargedparti-
cles with spin and magneticmomentin interaction,whichcould serveas a model
for the(classical) hydrogenatom. To this modelweapplytwo differentversionsof
geometricquantizationandwe obtain a hamiltonianoperatorwhich is (apart from
somenumerical constants)the well-known hamiltonianfor the hydrogenatom,
including spin -orbit coupling(fine-structure)andspin-spin interaction(hyperfine-

-structure).

§ 1. THE CLASSICAL HYDROGEN ATOM

Let us recall that the movementsof a classical (i.e. non-relativisticand not

quantized)particle with spin underthe influence of an exterior electromagnetic
field are curves in the evolution spaceE = 1R7 x S2, curves who are the charac-
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teristicsof a presymplectic2-form a(of rank 8) given by:

a= (m dv. — eE.dt) A(dr’ — v
1 dt) + — ee..kB’dr1 A dry’

.‘ ‘ 2 ~‘

— —sEiIkudUJAdu+d(pBfufdt)

with(r,v,t)EIR7,uES2C JR3 (lIuI~=l).
The quantitiesm, e, s and ~ are constantswhich are interpretedas the mass,

the electric charge, the spin and the magneticmomentassociatedto the spin
vector of this particle. The electromagneticfield (E, B) is supposedto depend

only on the space-timevariables(r, t). Theconditionda= 0 leadsus in particular
to the homogeneousMaxwell equations,who guaranteethe existence of the

electromagneticpotentials(A, V) such that B = rot A and E = — grad V— aLA.

With thesedefinitionsand the observationthat e~U1 duk A du1 = sin ~ d ~

A d~p= surface(S2), the presymplecticform acanbe written as:

a = d{(mv—eA) dr—Hdt}---s surf

whereH= -~-mIIvI]2+eV_pB .~

The equationsof motionof thissystemare given by the characteristicfoliation

of a, i.e. by ker (a):

= V ~5t

m&v=[e(E+vxB)+.tgrad~(B ~u)]öt

s~u= x B&t.

If we supposethat the electromagneticfield is createdby a secondparticleof

the same kind, then one derives finally (see [So2]) the following model: two
particlesin interactionwith massesmk,chargesek, spins5k andassociatedmagnetic
moments 2k (where k = 1, 2) can be describedby an evolutionspaceE, which
is an openset in JR’3 x S2xS2.and a presymplectic2-forma:

a = dw —s
1 surf1 —s2 surf2

with

(1.1) = m1v1 dr1 + [u# x C(r1 —r2)] dr1

+ m2v2 dr2 + [u#x C(r2—r1)] . dr2—Hdt
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m~~v,112 + — m
211 v211

2 + e
1 e2 V(r1 —r2) + ~ ~ u1~C’(r~— r2)

wherewe haveintroducedthefollowing usefulabbreviations:

u#=X1u,+A2u2, X1=k~1e2, X2=kp2e1, k=c
1

(1.2) V(q) =11q11’, C(q) = —gradqV(q) = q
C’(q) = 1 q ~ —3 q . qT ~ q~5.

Oneeasily verifiesthat a is invariantundertheactionof theGalilei group:

Tk -+ Ark + bt + c

Vk -+ AVk + b

Uk —~AUk

t-+t+T

AESO(3), b,cEIR3, rEIR

hence the general theorem on barycentric decompositioncan be applied (see
[So1]), which resultsin the following obviouschangeof coordinates:

R = (m,r
1 + m2r2)/M

V = (m1V1 + m2V2)/M

r r1 —r2

V = V1 — V2

M=m1+m2, m=m,m2/M.

In thesecoordinatesthe 1-form w (1.1) takesthe form:

(1.3) w = (MV~dR—Hbdt) + (my dr + [u# x C(r)1 . dr ~Hrdt)

ll~= —MIIVII
2

(1.4) ~= — m II ~II2+ e, e
2V(r) + p1~2u1 . C’(r) . U2

This model was proposedby Sounauto describethe hydrogenatomin terms

which are purely classical. If we forget the movementof the barycentre(which
is rectilinear with constant velocity), we obtain a reduced evolution space
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= JR3\{O} x JR3 x JR x S2xS2 containing the point (r, y, t, u
1. u2) with pre-

symplectic2-form

(1.5) o~=dw~—s1 surf1 —s2 surf2

(1.6)

This systemhasSO(3)x JR as a dynamicalgroupand theassociatedmomentum-

-mapping ([Sol 1) gives us 4 conserved(Noether) quantities:the energyH~and

thetotal angularmomentumLrtot:

(1.7) Lrtot=rx[my+u#xC(r)]+s,U,+s2u2.

Since we will be interestedonly in the reducedmodel,in the sequelwe will
drop the subscript r, so from now on we work with an evolution space

E C JR
7x S2x S2, togetherwith a presymplectic 2-form a defined by (1.5).

The formulas(1.6) and (1 .7) stronglysuggestthe introductionof the coordinates
p = my + u# x C(r) insteadof v and indeedthe gives:

a=dpAdr—s,~surf
1—s2surf2—dHAdt

L,0~= r x p + s1u1 +s2u2

(1.8) H = lip l1
2/2m + e

1e2 V(r) . ~ (C(r) x p)/m
+ ~2, j.~U1 C’(r) . + U~x C(r) 1

2/2m.

In a oneshouldrecognisethe canonicalpart dp A dr, in L one recognisesthe
usual angularmomentumplus the two internalangularmomentausually called

spin, and finally H shouldbe comparedto usual hamiltonian-operatorof the
hydrogenatom: kinetic energy, Coulomb potential, spin-orbit coupling, spin-

-interactionand the diamagneticterm.
Theequationsof motion are againgiven by ker(a), i.e.:

br/öt = v = (p — u#x C(r))/m

= [X
1v x C(r) + ~,~2C’(r) u2] x

(1.9)
s2~u2/~t= [X2v x C(r) + p1jA2C’(r) . U1] X U2

= C’(r) . [V X U#1 + e1e2C(r) — p1~.t2U, - C”(r) . u2

where a~C”(r) b=— ~ ilrlL
5[(r ~a)b+(r~b)a +(a ~b)r] + 15 lirIL7(ra)(rb)r.

Associatedto this evolution space E is a phasespaceM, which is a leaf t =

constantof E. The pull-back of a to M is a symplectic form, which we will
denotealso by a, andthe equationsof motion aregivenby the flow of the hamil-
tonian vectorfield XH associatedto the hamiltonianH (which is definedon M
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sinceH doesnot dependon t) by a(XH, .) + dH = 0.

§2. PREQUANTIZATION

Prequantizationis the intermediatestep betweena classicaldescriptionof a
system(by a symplectic manifold and a hamiltonian) and the corresponding
quantummechanicaldescription derived by means of geometric quantization.

It shouldbe noted at this point that there exist two (nearly) equivalentview-

points of geometricquantization: one by Souriau and one by Kostant (e.a.).
In this and subsequentsectionswe will describebriefly the necessaryingredients
of these two viewpoints, specialisingto the model we want to study, i.e. the
reducedhydrogenatom as describedin § 1. Fora moredetailedaccountof these
two quantizationproceduresthe readeris referredto [So11 and [Du] for Souriau’s

approach,and to [Bli, [Kol] and [Ko2], or to [S&W],[Sn], [Wo], [Tul], [Tu2]
for the approachby Kostantand others.

§ 2a. PREQUANTIZATION ACCORDINGTO SOURIAU

A prequantizationof a symplectic manifold (M, a) is a pair (Y, a) in which
iT : Y-+M is a principal U(l) = ~1 C C bundle over M and a/h a connection-

-form on Ywith associatedcurvatureform curv (a/h) = (ir*a)Ih

If M = ~2, a= —s surf(S2)thenM admitsaprequantizationonlyif s = ~- nh,

n E ~ \ ~0}. To describesuch a prequantizationwe recall the Hopf fibration
-+ ~2 which canbe definedas follows:

ZES3C C2~Z = (~),Zt= (Z’t, Z2~),Zt . Z = 1 (tdenotes
complex-conjugation

and transposition)

~ 2Z Z~— 1 E GL(2, C) is a hermitianinvolution with zero trace

=!uES2CIR3:2Z.Zt_1=u.o

123 01 0—i 10
with a = Pauh-matnces= (a , a , a ) = , - , .

10 iO 0—1

Now ir(Z) = u is a well definedprojection which turns ~3 into a U(l) bundle

over S2, becauseir is invariantunderthe action of U(l) on S3 definedby scalar

timesvector:
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~EU(l)CC,l~i= 1

~ 2ZZ~—l = 2(Z~).(Z~)t_l ir(Z)=ir(Zfl

zEC2, Z1Z=l

andbecausethis is the only freedomin Z whenir(Z) is given.
The group 7Z/nZL can be consideredas a subgroup of U(l) and U(l)

mod(ZZ/nTZZ) U(l), so we canconstructU(l) bundles)~over S2by

=

The 1-form a~on S3 definedby a~= inhZt dZ descendsto }~and (~,a)

definesa prequantizationof(S2, — nh surf).

The case in which we are interestedis the symplecticmanifold M = T*Q x

S2 x ~2 with configuration spaceQ = 1R3\{0} and the symplecticform a given

by (1.5) or (1.8) (at t = constant).One can verify (see [Soil: quantizationby
fusion) that a prequantization(Y, a) of this systemis givenby:

Y = T*Q x S3 x ~3j

where

(r, v, Z
1, Z2) (r, v, Z1 ~Texp (2irik,/n ,), Z2~1 exp (2irik2/n2))

for

~EU(l), ~ s~=—n1h, (i= 1,2)

2

and a 1-form a on Y which is the directimageof the 1-form f3 on T*Q x S
3 x S3:

= [my + u# x C(r)] dr + in
1 hZ1

1~dZ
1 + in2hZ~. dZ2.

It shouldbe noted that any other prequantization(Y’, a’) of this systemis
equivalent to the given one since M is simply connected(which implies that
H’(M, ]f) = 0 and this cohomologyspace indexesall inequivalentprequanti-

zations).
The hamiltonian vectorfield XH of H (see (1 .4) or (1 .8)) on M canbe lifted

to a vectorfieldXH on Yin a uniquewaysuchthat

and ~*Xj~=XH.

When we restrict ourselvesto the casewhich is particularly interesting:S1 =

s = — honefinds forX:22 H
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= v

öv=m~{C(r) x ~u#_u#x [C’(r) .v]C’(r) . [u~xvJ

+ e,e2C(r)—p,i.z2u1. C”(r)

(2.1) ~Z, = i/h~v,Z1 + ([X,C(r) x ‘~— ~1~.L2C ‘(r) u2] . a)Z,

= i/h{v2Z2 + ([X2C(r) x y — I.L1,.z2C’(r)u1] . a)Z2 }
vEv1+v2=l/2mliVil

2—e,e
2V(r)+,.Li~L2U,C’(r)u2

= H—2e1e2V(r) (c.f.(l.4))

where 6u#isgiven by (1.2)and (1.9) with öt = 1.

In this formula v1 and v2 are two real Lagrangemultipliers; their remaining
arbitrariness(v, — v2) disappearswhenpassingto the quotientY.

§2b. PREQUANTIZATION ACCORDING TO KOSTANT

In this formalism a prequantizationof a symplecticmanifold (M, a) is a com-
plex line-bundleL overM with connectionV andcompatiblefibre-innerproduct
suchthatcurvature (V) = a/h. The connectionbetweenthis formalism and Sou-

riau’s is that iT : L —÷ M is the vector bundle associatedto the principal U( 1)

bundle V by meansof the standardaction of U( 1) on C; the connectionV on
L is thenderivedfrom the connectionform a/hon V.

If M = S
2, a = — . surf the bundle L is trivialised by meansof two local

charts U~= JR2 = C on M with transition function z_ = l/z~(i.e. U~are the
two natural charts on S2= JP’(C), wherez~is the projection from the north

pole of ~2 and z_ the projectionfrom the southpole followed by an inversion;
the local coordinatez~is related to the coordinates(Z1, Z2) defined in the
beginning of §2a by z.~= Z’/Z2). Local chartsof L are now given by U~x C
with transitionfunction:

U÷xC~(m,w)-+(m,g_~(m)w)EUxC,

g_~(m)= (z~/ I z~I )_2s/h = (z/ z )2s1t5 = exp (— 2is~~/h)= exp (2is~/h).

From this formula onecanseethe origin of the quantizationcondition2s/hE ~:

this is a necessarycondition to guaranteethat this transition function is well
definedon ~2

A section X of L is representedby two complexfunctions X~on U~and the
connectionV acting on X is defined by meansof local symplecticpotentials

e~(i.e. ~ = a= —s surf): for a (local) vectorfied~on M:
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(V,X)~=

= is (z~z~+ 1)_1(±+dz+t_z~ldz~) a = 2is(z~z~~+ l~2dz~Adz~t.

In our caseM = T*Q x S2x ~2 ~ = 1R3\{0}, and a given by(1.5) or(l.8)(at
t = const),and a trivialisationof L is given overfour chartsU~= T*Q x x

with transitionfunctionsg(±~)(~±)givenby e.g.:

g(__)(_~)(m)= exp (— 2is
2p2~/h), g(~)(~)(m)= exp (2i(s1p1~+ s~p2j/h).

TheconnectionVis given on local sectionsX÷~by the formula:

(VEX)+±= ~ —i/h ~

= p dr + is1(z1~z1~t+ly’(z,~dz1~t— z,~dz,~)

+is2(z2+z2.t+1y1(z2+dz2~t_z2+tdz2+).

Otherchoicesof local symplecticpotentialst~ correspondto differenttrivialisa-

tions of the samebundle L (since there is only one suchbundle up to equiva-

lence).

§ 3. POLARIZATIONS

On can associatein a canonicalway a Hilbert-spaceH~to a prequantization
(in the formalism of either Souriau or Kostant) with the nice propertythat to

each observablef, f : M -+ IR, correspondsan operator Qf on h~satisfyingthe

commutationrelation

Q~fg]= i/h[Qf, Qgl

(with on the left-handside the Poisson-bracketof f andg andon the right-hand

side the commutatorof operators),togetherwith = 1. However H~cannot

serve as the filbert-space representingthe quantummechanicaldescription of
the systemsince it consistsessentiallyof functions on M and not of functions
of the position coordinatesonly (or the momentumcoordinatesonly).

The key-ideais to replace~ by a Hubert-spaceH consistingof (roughly
speaking) functions which dependon only half the number of coordinateson
M.Thereforeone introduces a polarization F which is a complex distribution

on TM of dimensionn = -~ dim M satisfyingthe following conditions:

(i) .F~C (TmM)cr, dimctJ~= n ~ Fis lagrangian
(ii) F is isotropic

(iii) F is involutive
(iv) dim~F

tflF=kis constantonM~
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(v) Ft + Fis involutive.

Conditions(i) to (iii) say essentiallythat a function which is constanton the
leavesof F dependsonly on the first n coordinatesof a canonical coordinate

system;conditions(iv) and (v) aretechnicalconditions.
The polarisationF w~will use whenquantizingthe (reduced)hydrogenatom,

is spannedby eitherof the followingthreesetsof five (local) vectorfieds:

(3.1) {a/av, a/az1t,a/az2t}, {a/ap. a/az1t,a/az2t}

(3.2) or { X, X~,X~

where z~(i = 1, 2 indicating the first and secondparticle) is a (local) complex-
-holomorphiccoordinateon S

2= JP1(C)with respect to the complex structure

introducedin §2b. RoughlyspeakingIJ~will be replacedby a filbert-spaceH

consistingof <<functions>> which are constantalong the polarizationF, which

meansin this caseof functionsof r andz~which areholomorphicin z,.
It is from this point on that the quantizationformalism of Souriau diverges

from the formalism of Kostant, so the (results of the) different quantization

procedureswill be discussedin thenext section.

§4. QUANTIZATION

The basic idea in both quantization formalisms is to compute the flow a~
associatedto the hamiltonian vectorfield XH (1.9), lift this flow to a flow

on thefilbert-spaceH, and finally computea~(’P)up to first order in t:

= -‘I’ + i/h JFI4’ t + 0(t2)

where the coefficientin t is interpretedas theresult of the hamiltonian-operator

actingon ‘I’: the generatorof time evolution.
The main computationalingredient to compute this first order term is the

methodof stationaryphase(see[Ho], lemma7.7.3):for~t* 0:

f e31~s1~(Pt)/4(iTtI~)_3I2exp ~— i~ix 112/t)f(x) dx
1 dx2

(4.1)

= f(0) — it/4j3 [L~ f] (0) + 0(t
2).

Remark. In the sequel of this section we will often say that the Hubert-space
H is given by a certain vectorspacewith an inner-product.In reality this space

will only be a pre-Hilbert-spacebut we haveadoptedthis languagefor the sake
brevity. The readeris askedto interpretthesestatementsas <<H is the completion
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of theinner-productspace>>,e.g.:

L2(lR) = {C~functionson IR}.

§4a. QUANTIZATION WITH POLARIZERS

In the quantizationschemeof Souriau [So1], given a polarizationF of (M, a)

and a prequantization(Y, a), one deals with the complex distribution F of
TYdefinedby:

(4.2) a(F)=0, F=ir~F

which is called a Planck-polarization(the horizontallift of F). Thenthe filbert-
-space H of wave functions is the space of C~functionsf: Y-+ C satisfying:

Ff= 0

V~EU(1):~*f=~.f

where on the left-hand side ~ denotestheactionof U(l) on the principalbundle

Y and on the right-handside ~ denotesmultiplication by the complexnumber~.

In our case Y is a quotient from T*Q x S3x S3 which is in turn embeddedin
T*Q x C2 x C2. Now we will alwaysusethe coordinates(r, v, Z,, Z

2) on T*Q x

C
2 x C2, but it goeswithout saying that the expressionsgiven will descendto Y.

So the Planck-polarizationF (which is 5 dimensional)associatedto the polari-

zation(3.1) is given by thetrace on V of themixed real/complexdistribution on

T*Q x C2 x C2 spannedby the 7 vectorfields:

a/av, a/aZ,, a/az
2

(N.B. bewareof the re1atio~nbetween (Z
1, Z2) (as defined in §2a) and z (as

defined in §2b): z~= Z’/Z2, which holds for both particles).The associated

filbert-spaceis given Ijy:

(4.3) H = { f(r, v, Z
1, Z2) = E0~..1,2 ~I1(r)0~Z,’t Z2~t, Ii ~iI

2< ~}
or equivalentlyby:

(4.4) H = { ‘4’ (r),~a,j3 = 1, 2 and Ii ‘I’ 112< ~

where the norm II II is derived from the hermitian scalarproduct K , ) definedby

(f,g)= (2iT)2 f f.gt dr du
1 du2

xS
2xS2

or
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(~,~) = ~ i2ft(r)0~(r)~tdr.

It is worth noticing that the Planck polarizationF - (4.2) can be viewed as

the kernelof the derivatived~of the complex5-form ~ on Y:

= vol (Z,, dZ1)t A vol (Z2. dZ2)t A dr
1 A dr2 A dr3

wherevol(Z, dZ)= Z’dZ2—Z2dZ’.
It canbe shownthat this 5-formsatisfiesthe conditions:

(i) d~=ik/haA~

(4.5)

(ii) rank (0) = n

where k E ~ \{0 }(here k = 2) and n = dim (M) (= 5). Any complexn-form

satisfyingtheseconditionsis called a k-polarizerand the (complex)distribution
F definedby:

F = ker(dO)

is a Planck polarization.For an introductory account,see[Du] and [Ra]. One

of thesubtletieswith polarizersis the risingof certainglobal existenceconditions,
which leadsto strongselectionrules on the (prequantizable)symplecticmanifolds

(e.g. only spins -~- and 1 canbe <<polarized>>in a SU(2)-invariantway; fortunately

enoughthis is the caseof our model).
Using the polarizer ~ we can describethe filbert-spaceH (4.3) as the set of

thoseC functionsf: V —* C satisfying:

(4.6) (df— i/hfa) A 0 = 0.

Let a~denotethe flow of the Hamiltonianvectorfield XH on (M, a) (see (1 .9))
and the flow of X~,on (Y, a) (see (2.1)).The flow is a local 1-parameter
group of diffeomorphismsof (Y, a) which leavesa invariantand commuteswith

the actionof U(1). Trivially, q5~= â~.”~/is again a polarizer(i.e. satisfyingcondi-
tions (4.5)) with associatedHilbert spaceH~as definedby (4.6). Since = fo a~
is in H~if f is in H, it is possibleto definea pairing between andH by:

(4.7) (ft,g)Kff.gt.~I0A0t/Xi.X
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where X is the Liouville volume of (M, a); since O~.A 0~j~a volume from on M it
is proportional to X with proportionality function 0~.A cbt/X. If 0~A 0t is now-
here zero (i.e. the polarizationF transverseto the polarizationa~~F)then (4.7)

definesa linear map from 11 to H and hencean evolution operator(also called
on H by:

(4.8) (a~(f),g) = ~ g).

If the constantg in (4.7) can be chosensuch that the expansion(4.1) holds

(and in our case we can) then the flow at (4.8) on H definesa Hamiltonian

operatorlii.
In the caseof the hydrogenatom the pairing(4.7)of polarizersreads:

~ g> = (2iT)
2(2iTmh)312e3”~~’~’~014.

f exp (— i/hf (v o a~)(r,v, Z
1,

)r*QXs2Xs2

~ 1,2’(~o~3Y~~(t)t}’2~(t)t)

(4.9) . (~, = ,2cI(r),,Y~tY,
1t)t dr d(mv)du

1 du2

where

f(r, v, Z,, Z2) = t(r)~Z,~tZ2~~t, g(r, v, Z1, Z2) =

~(t) = Z1(t) exp (— i/h f (v1 o a5)(r, ~,Z,, Z~)d~) (j = 1, 2) (cf. (2.1)),

Jo

(r(t), v(t), Z,(t), Z2 (t)) = a~(r, ~‘, Z,, Z2) and = I O~A 0 t/X

The expressiongiven for the constant K contains the standardnormalization
coefficients togetherwith a phase factor correspondingto the Maslov index.
Onecanshowthat:

K~= t
312[1 +at2+b

1v’t
2+0(t3)]

and

exp (— i/h (v o a
5)(r,y, z,, Z2) ds)

JO

= exp (— itm II v11
2/2h)[1 + it/h(e, e

2 V(r) — ~ ~2 u1 C’(r) . u2) + yt
2 + 0(t3)]
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wherea, b1 (/ = 1, 2, 3) and7 areindependentof v. In view of this last expression
we want to apply the method of stationaryphaseto the integrationoverV. Since

the vectorfield XH is linear in the velocity v, the flows a~and are analytic in
y and hencewe canapply themethod of stationaryphaseto eachterm separately
in the expansionof the integrandof (4.9) with respectto ‘i. It follows (because

we also haveanalyticity in t) that only the coefficientsof Ii~Ii°tand Ii V11
2t2 will

contributenontrivially to the lrst order in t (the Hamiltonian).Integrationon

spheresis achievedby using some classicalformulas on the integral over ~2 of
thetraceof polynomialsof JR3andwe finally get the result:

(lH’I’)~
5p= — h

2/2m~ ~ + e
1 e2 V(r)’4’~

— X1/m o~
7 (C(r) x h/i V~’I’.~)— X

2/m u~ (C(r) x h/i V~’I’~..,)

+ 519~~ ~f,k(a’)~ . C’(r)~ . (ak)~t

+ (X1
2 + X

2
2)/m C(r) 112 ‘4i~ + X, X

2/m ~1,~(a~’)0 . D(r)
1’~. (cJk)~ö.

with D(r)~1’=
5fk11 rIi

4—r’ r”IIrIi6.
If we omit the wave functions,denoteby 0. the Pauli-matricesactingon the

j-th index of the wave function (I = 1, 2) and introduce o~= ~ + X
2 ~2

(cf. (1.2)) then we obtain the Hamiltonian operator lH as expressed with respect

to therepresentation(4.4) of the filbert-spaceH:

(4.10) lU=—h
2/2mi~+e,e

2 V(r)

— o# (C(r) x h/i Vr)/m + ~ ~1 ~2 ~1 C’(r)

+ (X
2 + X

2)/m Ii C(r) 112 + ~ X2/m (0, X C(r)) . (~, x C(r)).

§4b. QUANTIZATION WITH (— .~)~F - FORMS

Since it is outsidethe scopeof this paper to give a completedescriptionof
thisquantizationmethod,we only give thenecessaryintermediateresultstogether
with someremarksfor thosereaderswho know aboutthis method.

Using the polarizationdefined by either(3.1) or (3.2) we obtain a filbert-

-spaceH which can be representedby functionsof r, z1 andz2 (r E 1R
3, ~ E C)

which are polynomialsof degree(2sf/h— 1) in z
1. If we specialiseto the case

= ~2 = h we obtain spin-spacesof dimension 2 for eachspin, corresponding

to particles with spin ~- . It shouldbe noted that the use of(_ -~-)-F-forms

gives us a spin-shift of one half with respectto the previousmethod (which is
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equivalent to using (— -~.)-F-densities;see §4c) (see also [Wo], § 6.3.6 and

[Tu2]); the readeris referredto the discussionin §5 for more commentson

this difference.In our casethe filbert-spacecannow be givenas:

(4.11) H = (0 (r, z1,z2) = ~ ~, ,~I1(r)0~z,az2~kz,z,
t+ 1Y~(z

2z2t+ 1)—i

‘I’ is <<squareintegrable>>}

with inner-product

(4.12) (~,~)=16h2f drdx1dy,dx2dy2(z,z,
t+ 1y2(z

2z2t+l)2.

n~
3xa2

~\/det A ~ (r, z
1,z2)t p(r, z1,z2)

with ~JdetA=(2hhy1(z1z,t+ l)(z2z2t+ 1)

or equivalentlyby

(4.13) H = {‘P(r)~ square-integrable,a, 13 = 0, 1}

with inner-product

= iT ~

Remarks.

1) In the casesZ7, r” and ak the superscriptsa and k denotethe a-th and
k-th componentof the vectors Z1, r and a; however the superscripta in

denotesan exponent.
2) Ill and ~ can be seenas the local (i.e. on the chart U++) expressionsof

sections of the prequantumbundle L, sectionswhich are covariant constant
alongthe polarisationF.

3) The (— h-F-forms are chosensuch that they are identically 1 on the

meta-framecorrespondingto the framesofFgivenin (3.2).
4) The first line in (4.12) is derivedfrom the Liouville measureassociated

to the symplectic form a given in (1.8) by substitutingthe three vectorfields
— a/ap X~.On S

2 we usethe local complexcoordinatez = x + iy as definedin

§ 2b, in which thesurfaceis givenby

surf.=4(x2+y2+ lY2dyAdx.
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5) V’det A is a correcting factor to insure that the expressionis a correct

densityon JR3 x C2.
6) The second,more convenientformulation of H canbe computeddirectly

from the first oneby integratingoverC2.

If a~is the flow associatedto the hamiltonianvectorfield X
11 (1 .9) then the

flow on His definedby the BKS (Blattner-Kostant-Sternberg)-kernel:

(4.14) (0, â~)) = l6h2f drdp dx1 dy, dx2dy2(z,z1t+ 1y
2(z

2z2t+ l~2.

~V’detA~0(r, z1, z2)t(~oo a~)(r,p, 2,, 22)

(ihY1f (~(XH)—F)(a~(r,p, 21, z2))

withA’ aS x 5 matrix givenby:

= (ih)~Xk(r’ oa) (ih)~Xk(zXoal)
A~ (ihi’X5(r’ 00) (ih)

1 X
5(z~oa~)

Remarks

1) Here the first partis thecompleteLiouville measure.
2) (~p0 a~). exp (. . . f . . . ds) is the local expressionof the time-evolution

of the section p of the prequantization line bundle L.
3) \/detA~ is again a correcting factor to insure that the integral is a well

defineddensityon JR
6 x C2.

4) Since a~~Fand Ft are transversalfor small t, no extratermsrepresenting

the — — - formsareinvolved.

Finally we computethe term linearin tin the integral (4.14),usingthe flow
(1.9) and the method of stationaryphase(4.1). Whenwe evaluatethe integrals

over C2, usingthe secondrepresentationof the filbert-space,the result is given
by the hamiltonian:

(4.15) IH=—h2/2mAr+eie
2V(r)

— ~ (C(r) x h/i Vr)/2m + 2/9 ~1 11201 . C’(r) 02

+ (X1
2+ X

2
2)/4m C(r) 112 + A, X

2/4m(o,x C(r)) ~°2 x C(r))

where o~= ~ ~1 + A2 02 (compare with (1.2)) and where the matricesO~act
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upon the j-th index of ‘I’d, i.e. 0~actupon index a and 02 upon13.

§4c. QUANTIZATION WITH (— -~~)~F~DENSffIES

When using (— ~)-F-densities insteadof (— +)-F-forms thereis apparently

no changein the filbert-space:it is, apartfrom an overall factor,given by (4.11)

(or equivalently by (4.13)). The most important difference is that one has to

use = s2 = — h insteadof ~, = 53 = h to derive this result.This differencecan
2 1

be attributed to the fact that the — — -F-form which is 1 on the metaframe

correspondingto the frame (3.2) is a (— ~ -F-form which is covariantconstant
1

along F, while the — -i-- -F-densitywhich is 1 on the frame(3.2) is not. On the

otherhandthe (— ~)-F-density which takesthe value (z1z1t+ 1) 2(z2z2t+1)~

on the frame(3.2) is a covariantconstant (— _)-F-density.Another difference

is that V’det A shouldbe replacedby ‘.1 I detA ‘ but sincedet A is real positive.
thischangeis not visible.

The differencebetweenforms and densitiesbecomesvisible whenwe calculate

(0, a~(~))with the BKS-kemel for (— ~)~F~densities:~det A~has to be repla-

ced by ~ detA~ times a factorof modulus1: the Maslov index (seealso §4a).

Moreoverthe calculationsof a~hasto bedonewith = ~2= -~- h insteadof s1 =

= ii. Apart from thosechanges,the sameremarksas for the BKS-kernelwith

forms are valid. In this case one obtainesthe hamiltonianWI:

(4.16) lH=—h
2/2mi~

1 +e1e2V(r)

— ~ (C(r) x h/i Vr)/m + 5/91111120, . C’(r) 02

+ (A1
2 + A

2
2)/m II C(r) 112 + X

1A2/m(o, x C(r)) . (a x C(r))

which is exactly equal to the result (4.10) obtainedby quantizationwith pola-

rizers.

§ 5. DISCUSSION

The resultsof the two quantizationmethods(which we will call the polarizer
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method andthe -~- -form method)are given in (4.10) and (4.15).The fact that

these two methodsgive different results(althoughonly in somenumericalcon-

stants)shouldnot be surprising since they quantizedifferent symplecticmani-

folds (polarizers ~, = ~2 = ~ ( ~~F-forms ~, = = h). The justification

of thesedifferent modelsis given by the interpretationof the parameters (or
equivalently by the resulting quantum filbert-space); however, the authors
could not decide which procedureis the right one,sincebothmethodsdo not

really arrive at the correctanswer.
Before we discussthe different terms in more detail, we make two global

comments.First we note that we haveomitted the origin of JR3 from our confi-
guration space becauseof the singularity at r = 0 of the Coulomb potential.
Howeverwe havereintroducedthe origin in the descriptionof our filbert-space,
which consistsof four copiesof L 2(1R3, Lebesgue).This manipulationis comple-

tely justified by the isomorphismL2(JR3) -+ L2(JR3\ (0)) (given by restriction of
functions) betweenfilbert-spaces.The secondremark concernsthe interpreta-

tion of the model:thereducedmodel as given in § 1 doesnotdescribethemotion
of the electron,althoughit doesto a fairly good approximationsincethereduced

mass is nearly equalto theelectronmass(an <<infinitely heavy>>proton).Conse-
quently our model incorporatesfrom the beginningthe correctionthat one has

to usethereducedmassinsteadof the electronmass.
We now consider the different terms in (4.10) and (4.15) separately while

substituting the correctvalues for the charges,magneticmomentsand masses,
interpretingthe first particleas theelectronandthe secondparticleas the proton;

moreprecisely:

m
2=m~m =reducedmass=m1m2/(m1+ m2) me

e, = — e e2= e e = elementary(positive) charge

I.L1=_g~eh/(4m~c) !.L2=g~eh/(4m~c)

A, =_g~e
2h/(4m~c2) A

2=—g~e
2h/(4m~c2)

= electron g-value ~‘2.0 g~= proton g-value 5.6.

To facilitate the comparisonwith literature (e.g. [B&S], [Co] or [Ga]) we also
introducethe operatorsangular momentumL, electron-spinSandproton-spin
I definedas:

1 1
L=rxh/iV~ S= —ho

1 1=—ho2.
2 2
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With theseconventionswe obtain thefollowing terms.

1) Kinetic energyand Coulombpotential

h2 e2

2m r lirli

Thesetermsare well known andneedno comment.

2) Electronspin-orbit coupling

1 g~e2 1
br— -SL.

2 2mec2 11r113

Here we note for the first time a difference:the polarizermethod obtainsa

factor 1, the — - form method finds a factor — and in literature one finds a
1 2 2

factor .~- with a footnote saying that a heuristicreasoninggives a factor 1 but

due to Thomas precessionthe correct value should be -.~- - It seemsthat the

— -form method obtains the correct factor; on the other hand, the purely

phenemenologicalconstantk (introduced in (1 .2)) was given the valuek = c~1

by Souriau to be compatiblewith the macroscopictheory of magnetism.Hence

nothinghindersus to makeanotherchoice,e.g.k = c~1,to obtain the correct

factor in the spin-orbit couplingwhen usingthe polarizermethod (showingthat

thecorrectvalueobtainedby the -~- -form methodis accidental).

3) Spin-spin interaction

gg e2 [ S~I (S~r)(I-r)
(5/9 or 2/9) . I — + 3

4mempc2 L II r Il~ II r Il~

Again different constants:5/9 by the polarizermethod,2/9 by the -~ -form

method and I in literature! Before we discussthe different constantswe note
that the operatorin squarebracketscontainsa singularity in the origin; in the
usual way (see [Ga] or [B&S]) onededucesthat this singularity has the form of

a delta function ~(r). This delta function contribution is sometimescalled the
Fermi-contact term and it explains the hyperfine structure of the spectrum

of the hydrogenatom (the 21.4 cm radio wavein astronomy)which ,s verified
experimentalyto a very high degreeof accuracy.It shows that the constants
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obtainedby both methodsareincorrect. Moreover,the -form method,which

was originally introducedto obtain the correctenergyspectrumof the harmonic
oscillator (metaplecticcorrection), does not in this casecorrect the spectrum

correctly.
It is our opinion that this is a seriousproblem which seemsto be intimately

relatedto the useof complexpolarizations.One might hopethat systematicuse
of real polarizations(evenif they havesingularities,which is unavoidableon S2)
leadsto thecorrectanswer.Researchis beingdonein this direction.

4) Proton spin-orbit interaction

1 ge~ 1
br— . _____ -——-— ~2 2m~c2 11r113

This term has the same form as the electron spin-orbit interaction but is
neglegiblewith respectto it sincethe ratio mp/me 2000.Apart from this con-

sideration, the same remarks as given for the electron spin-orbit interaction

apply in this case.
5) Diamagneticterms

I 1 [A,2+A
2

2 A,A
2 1

Ilor — .1 + .(oxr).(oxr)l
\ 4 L m~jr~ mlIrII6

Thesetermsare of the orderc~
4(they contain A2) andhenceneglegiblewith

respectto the terms 1), 2) and 3) which are of the order 1 or C2. The origin
of the differencein constantshere is the sameas in the secondtermbutappears
heresquaredbecauseit is quadraticin the parametersA.
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